Abstract

To investigate how hydrodynamic cavitation (HC) affects the adsorption of sodium oleate (NaOl) on diaspore and kaolinite surfaces, a comparative study on NaOl adsorption was conducted under different conditions. The flotation and separation of the minerals were also examined with and without HC pretreatment of NaOl. The results show that short-term HC pretreatment of NaOl solutions did not induce a measurable change in the chemical structure of NaOl, but produced micro-nanobubbles (MNBs) and resulted in decreases in the surface tension and viscosity of liquids. When MNBs interacted with minerals, their anchor on solids could affect the contact angles, zeta potentials, and surface NaOl adsorption toward minerals. At low NaOl concentrations, the presence of MNBs reduced the NaOl adsorption capacity and particles’ zeta potential while increasing the minerals’ contact angle. At higher NaOl concentrations, the presence of MNBs promoted NaOl adsorption, further increased the minerals’ contact angle, and further decreases the particles’ zeta potential. Additionally, the flotation and separation of minerals can be enhanced at low NaOl concentrations, largely due to the enhanced bubble mineralization through the selective surface-anchoring of MNBs on diaspore. However, the separation efficiency might deteriorate at high NaOl concentrations, though the presence of MNBs amplified the divergences in minerals’ surface wettability and zeta potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.