Abstract

Study of magnetotransport properties of ScPtBi revealed simultaneously: a negative contribution to the longitudinal magnetoresistance, the planar Hall effect, and distinct angular narrowing of the longitudinal magnetoresistance { three hallmarks of chiral magnetic anomaly (pumping of axial charge between Weyl nodes), a distinct property of topological semimetals. Electronic structure calculations show that structural defects, such as antisites and vacancies, bring substantial density of states at the Fermi level of ScPtBi, indicating that it is a semimetal, not a zero-gap semiconductor, as predicted earlier. This is in accord with electrical resistivity in ScPtBi, showing no characteristics of semiconductor. Moreover, below 0.7K we observed an onset of a superconducting transition, with the resistivity disappearing completely below 0.23 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.