Abstract

Searching for exotic transport properties in new topological state of matters is an active topic. One of the most fascinating achievements is the chiral anomaly in recently discovered Weyl semimetals (WSMs), which is manifested as a negative longitudinal magnetoresistance (LMR) in the presence of a magnetic field B parallel to an electric field E. Another predicted key effect closely related to the chiral anomaly is the planar Hall effect (PHE), which has not been identified in WSMs so far. Here we carried out the planar Hall measurements on Cd3As2 nanoplates, and found that, accompanied by the large negative LMR, a PHE with non-zero transverse voltage can be developed while tilting the in-plane magnetic field B away from the electric field E. Further experiments reveal that both the PHE and the negative LMR can be suppressed synchronously by increasing the temperature, but still visible at room temperature, indicating the same origin of these two effects. The observation of PHE in Cd3As2 nanoplates gives another transport evidence for the chiral anomaly and provides a deep insight into the chiral charge pumping in Weyl Fermions system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call