Abstract

We combine optical and magneto-optical spectroscopies with complementary vibrational and magnetic property measurements to reveal finite length scale effects in nanoscale $\ensuremath{\alpha}\ensuremath{-}{\mathrm{Fe}}_{2}{\mathrm{O}}_{3}$. Analysis of the $d$-to-$d$ on-site excitations uncovers enhanced color contrast at particle sizes below approximately 75 nm due to size-induced changes in spin-charge coupling that are suppressed again below the superparamagnetic limit. These findings provide a general strategy for amplifying magnetochromism in $\ensuremath{\alpha}\ensuremath{-}{\mathrm{Fe}}_{2}{\mathrm{O}}_{3}$ and other iron-containing nanomaterials that may be useful for advanced sensing applications. We also unravel the size dependence of collective excitations in this iconic antiferromagnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call