Abstract
Superparamagnetic iron oxide nanoparticles (SPION) with an average particle diameter of 6 nm are prepared by controlled chemical coprecipitations. Colloidal suspensions of noninteracting SPION, where the surface has been modified with three different types of biocompatible substances, namely, starch, gold (Au), and methoxypoly(ethylene glycol) (MPEG) have been fabricated via three different techniques. Starch-coated SPION are prepared by coprecipitation in a polymeric matrix, Au-coated SPION are fabricated by the microemulsion method, and MPEG-coated SPION are prepared using the self-assembly approach. The magnetic nanoparticles form a core-shell structure, and the magnetic dipole-dipole interactions are screened by a layer of coating agents. The amounts of coating agents and SPION are indirectly calculated from the thermogravimetric analysis and superconducting quantum interference device measurements by assuming passive oxidation on the surface of the SPION, and the other conditions do not influence the measurements. The dependency of the spectral characteristics of Mössbauer spectroscopy as a function of an external magnetic field Hext is measured to investigate the effect of dipole-dipole screening of the different coating layers on the SPION. Uncoated SPION show a stable magnetic moment under Hext, and the superparamagnetic (SPM) fraction transforms to a ferrimagnetic state. Starch and Au-coated SPION retain the SPM fraction according to Mössbauer spectroscopy and magnetization measurements. MPEG-coated SPION show hyperfine magnetic structure without the quadrupole effect with increasing the value of the blocking temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.