Abstract

We show that the Weibel or current filamentation instability can lead to the emission of circularly polarized radiation. Using particle-in-cell simulations and a radiation post-processing numerical algorithm, we demonstrate that the level of circular polarization increases with the initial plasma magnetization, saturating at ${\sim }13\,\%$ when the magnetization, given by the ratio of magnetic energy density to the electron kinetic energy density, is larger than 0.05. Furthermore, we show that this effect requires an ion–electron mass ratio greater than unity. These findings, which could also be tested in currently available laboratory conditions, show that the recent observation of circular polarization in gamma-ray burst afterglows could be attributed to the presence of magnetized current filaments driven by the Weibel or current filamentation instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call