Abstract
The tangential drift of the trapped alpha particles in bounce or transit averaged kinetic treatments of stellarators reverses direction on each flux surface at a particular value of pitch angle. The vanishing of the tangential drift corresponds to a resonance that allows a narrow collisional boundary layer to form due to the presence of pitch angle scattering by the background ions. The alphas in and adjacent to this drift reversal layer are particularly sensitive to collisions because they are in or very close to resonance. As a result, enhanced collisional transport occurs due to the existence of this drift reversal resonance in a nearly quasisymmetric stellarator with a single helicity imperfection. Moreover, the value of the resonant pitch angle for drift reversal on neighbouring flux surfaces varies continuously, with the inner flux surfaces having a larger resonant pitch angle than the outer ones. This pitch angle dependence means phase space ‘tubes’ or ‘pods’ exist that connect the inner flux surfaces to the outer ones. These pods allow collisional radial transport of the alphas to extend over the entire radial cross section. When collisions are finite, but weak, and the single helicity departure from quasisymmetry large enough, the collisionless alpha particle motion remains constrained by collisions as they complete their drift trajectories in phase. In particular, the small radial scales introduced by the radial extent or width of the phase space pods require the retention of the nonlinear radial drift term in the kinetic equation. The associated collisional radial transport is evaluated and found to be significant, but is shown to preferentially remove slower speed alphas without substantially affecting birth alphas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have