Abstract
Recent strides in microfabrication technologies offer important possibilities for developing microscale robotic systems with enhanced power, functionality and versatility. Previous microrobots fabricated by lithographic techniques usually lack the ability to adaptively deform in confined and constricted spaces and navigate through, therefore hindering their applications in complex biological environments. Here, a microfluidic strategy is combined with a dip-coating process for continuous fabrication of soft helical structures with controllable mechanical property as magnetically propelled microrobots, capable of actively propelling through narrow and sinuous microchannels. Because of their self-adaptive deformation capability, the magnetically propelled soft microrobots can actively navigate through a narrow opening, 2.21 times smaller than the sectional area of the microrobot, and a U-shape-bent capillary, directed by a programmed magnetic field. Additionally, the soft microrobot demonstrates increased swimming speed in a fluid of high viscosity, because of the adaptive tightening deformation of the helix when swimming. This new magnetically propelled soft microrobot and its attractive performance will open up new possibilities for biomedical operation at the micro and nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.