Abstract

We present an optimized scheme for nanoscale measurements of temperature in a complex environment using the nitrogen-vacancy center in nanodiamonds (NDs). To this end we combine a Ramsey measurement for temperature determination with advanced optimal control theory. We test our new design on single nitrogen-vacancy centers in bulk diamond and fixed NDs, achieving better readout signal than with common soft or hard microwave control pulses. We demonstrate temperature readout using rotating NDs in an agarose matrix. Our method opens the way to measure temperature fluctuations in complex biological environment. The used principle is universal and not restricted to temperature sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.