Abstract

Magnetically actuated soft microrobots hold promise for biomedical applications that necessitate precise control and adaptability in complex environments. These microrobots can be accurately steered below their step-out frequencies where they exhibit synchronized motion with external magnetic fields. However, the step-out frequencies of soft microrobots have not been investigated yet, as opposed to their rigid counterparts. In this work, we develop an analytic model from the magneto-elastohydrodynamics to establish the relationship between the step-out frequency of soft sperm-like microrobots and their magnetic properties, geometry, wave patterns, and the viscosity of the surrounding medium. We fabricate soft sperm-like microrobots using electrospinning and assess their swimming abilities in mediums with varying viscosities under an oscillating magnetic field. We observe slight variations in wave patterns of the sperm-like microrobots as the actuation frequency changes. Our theoretical model, which analyzes these wave patterns observed without exceeding the step-out threshold, quantitatively agrees with the experimentally measured step-out frequencies. By accurately predicting the step-out frequency, the proposed model lays a foundation for achieving precise control over individual soft microrobots and enabling selective control within a swarm when executing biomedical tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.