Abstract

We show that magnetic susceptibility can reveal spin entanglement between individual constituents of a solid, while magnetization describes their local properties. We then show that magnetization and its variance (equivalent to magnetic susceptibility for a wide class of systems) satisfy complementary relation in the quantum-mechanical sense. It describes sharing of (quantum) information in the solid between spin entanglement and local properties of its individual constituents. Magnetic susceptibility is shown to be a macroscopic (thermodynamical) spin entanglement witness that can be applied without complete knowledge of the specific model (Hamiltonian) of the solid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call