Abstract

We investigate macroscopic entanglement in an infinite XX spin-$\frac{1}{2}$ chain with staggered magnetic field, ${B}_{l}=B+{e}^{\ensuremath{-}i\ensuremath{\pi}l}b$. Using single-site entropy and by constructing an entanglement witness, we search for the existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the role of the alternating magnetic field $b$ is, in general, to suppress entanglement as do $B$ and $T$, we find that when $T=0$, introducing $b$ allows the existence of entanglement even when the uniform magnetic field $B$ is arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by a staggered magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.