Abstract

Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that "soft" ferromagnetic material EuB_{6} can achieve multiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB_{6} is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl points by rotating the moment to the [111] direction. Interestingly, we identify a composite semimetal phase featuring the coexistence of a nodal line and Weyl points with the moment in the [110] direction. Topological surface states and anomalous Hall conductivity, which are sensitive to the magnetic order, have been computed and are expected to be experimentally observable. Large-Chern-number quantum anomalous Hall effect can be realized in its [111]-oriented quantum-well structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.