Abstract
The diagnosis of ankle joint athletic injuries using traditional magnetic resonance imaging (MRI) relies on the subjective judgment and experience of doctors, and small structural changes in athletic injuries are difficult to accurately detect and diagnose. By using machine learning (ML) algorithms and image processing techniques to obtain objective and consistent diagnostic results, the accuracy of diagnosing ankle joint athletic injuries can be improved. This article collected a large number of MRI images of ankle joint athletic injuries, and preprocessed the collected images to extract morphological and texture features, and perform feature fusion. The Residual Network (ResNet) was improved, and the Leaky linear rectification function (ReLU, Corrected linear unit) activation function was introduced. The transfer learning was utilized to increase the convergence speed of the model, and the global maximum pooling layer and softmax classifier were used to construct the fully connected layer. After sufficient training on the training set, the findings on the test set indicated that the average accuracy of the improved ResNet model for ankle joint injury classification was 98.3%. The use of an improved ResNet model can effectively improve the diagnostic effectiveness of ankle joint athletic injuries, providing a new method for medical diagnosis of MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.