Abstract

To use magnetic resonance fingerprinting (MRF)-derived T1 and T2 values to differentiate gonadotroph from non-gonadotroph pituitary macroadenomas based on the 2017 World Health Organization classification of pituitary adenomas. A total of 57 patients with suspected pituitary macroadenomas were enrolled for analyses in this study between May 2018 and January 2020. Conventional magnetic resonance imaging (MRI) and MRF were performed in all patients before surgery using a 3-T MRI scanner. MRF-derived T1 and T2 values were compared between the gonadotroph and non-gonadotroph pituitary macroadenomas using a Mann-Whitney U test. The Knosp classification was used to evaluate cavernous sinus invasion by the adenomas. Receiver operating characteristic analyses were used to determine the diagnostic performance of T1 and T2 values. Quantitative T1 and T2 values yielded from MRF of gonadotroph pituitary macroadenomas were significantly higher than those of the non-gonadotroph pituitary macroadenomas (p < 0.001 and = 0.002, respectively). The AUC for the T2 value (0.888) was significantly greater than that for the T1 value (0.742) (p = 0.034). The AUC for combined T1 and T2 values was 0.885. Non-gonadotroph pituitary macroadenomas were more likely to invade the cavernous sinus than gonadotroph pituitary macroadenomas (55% vs 26%, p = 0.026). MRF may help to preoperatively differentiate between gonadotroph and non-gonadotroph pituitary macroadenomas and may be useful in guiding the treatment of these adenomas. • Somatostatin receptor type 3 is the most abundant receptor subtype in gonadotroph pituitary adenomas. • Magnetic resonance fingerprinting may help to preoperatively differentiate between gonadotroph and non-gonadotroph pituitary macroadenomas. • Magnetic resonance fingerprinting shows potential for guiding the treatment of pituitary macroadenomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call