Abstract

Quantitative T1 and T2 mapping in the abdomen provides valuable information in tissue characterization but is technically challenging due to respiratory motions. The proposed technique integrates magnetic resonance fingerprinting (MRF) and pilot tone (PT) navigator with retrospective gating to provide simultaneous quantification of multiple tissue properties in a single acquisition without breath-holding or patient set-up. To develop a free-breathing abdominal MRF technique for quantitative mapping in the abdomen. Prospective. Twelve healthy volunteers. A 3 T, two-dimensional (2D) and three-dimensional (3D) spiral MRF sequence with fast imaging with steady-state free precession (FISP) readout. The PT navigator was compared to standard respiratory belt performance. The T1 and T2 values acquired using 2D and 3D MRF with and without PT were obtained in a phantom and compared to reference values. Digital phantom simulation was performed to evaluate PT MRF reconstruction with varying breathing patterns. In the in vivo studies, T1 and T2 values derived from PT 2D MRF were compared to 2D breath-hold MRF. T1 and T2 values derived from PT 3D MRF were compared to published values. Principal component analysis (PCA), linear regression, relative error, Pearson correlation, paired Student's t-test, Bland-Altman Analysis. The phantom study showed PT MRF T1 values had a mean difference of 0.2% ± 0.1%, and T2 values had a mean difference of 0.1% ± 0.4% when compared to no-PT MRF values. The digital phantom experiment suggested the T1 and T2 maps at both end-exhalation and end-inhalation states resemble the corresponding ground-truth maps. The phantom study showed good agreement between MRF T1 and T2 values and with reference values. In vivo studies demonstrated that 2D and 3D quantitative imaging in the abdomen could be achieved with integration of PT navigation with MRF reconstruction using retrospective gating of respiratory motion. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.