Abstract

The choice of surgical treatment for meningiomas is affected by the subtype and clinical characteristics. Therefore, an accurate preoperative diagnosis is essential. Current magnetic resonance imaging (MRI) technology is unable to distinguish between meningioma subtypes. In the present study, we compared and evaluated the utility of conventional MRI, magnetic resonance fingerprinting (MRF), and diffusion-weighted imaging (DWI) in differentiating World Health Organization grade I transitional and fibrous meningiomas from meningothelial meningiomas. Forty-six patients with pathologically confirmed meningiomas (15 meningothelial, 18 transitional, and 13 fibrous) were enrolled in the present study. All patients underwent conventional MRI, MRF, and DWI scans before surgery using a 3T scanner. The Jonckheere-Terpstra test was used to analyze differences in the signal and enhancement characteristics of the three groups from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI). To investigate the difference in quantitative T1 and T2 values derived from MRF and apparent diffusion coefficient (ADC) values between the three groups using the Kruskal-Wallis test, regions of interest (ROIs) were manually drawn on the parenchymal portion of the tumors; P<0.017 was considered statistically significant after Bonferroni correction for multiple comparison. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performances of the different parameters. Meningothelial meningiomas had significantly higher T1 and T2 values than transitional and fibrous meningiomas (all P<0.017). ROC analysis results revealed that the combination of T1 and T2 values had the largest area under the curve (AUC). The AUC for the combination of T1 and T2 values was 0.826 between meningothelial and transitional meningiomas, and the AUC for the combination of T1 and T2 values between meningothelial and fibrous meningiomas was 0.903. No significant differences were found in the T1 and T2 values between transitional and fibrous meningiomas. There were also no statistically significant differences in the conventional MRI (including T1WI, T2WI, and contrast-enhanced T1WI) and ADC values between the three meningioma subtypes (all P>0.05). MRF may provide more quantitative information than either conventional MRI or DWI for differentiating transitional and fibrous meningiomas from meningothelial meningiomas. T1 and T2 values derived from MRF may distinguish transitional and fibrous meningiomas from meningothelial meningiomas, and the combination of T1 and T2 values provides the highest diagnostic efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call