Abstract
Generally, magnetic heterostructures are obtained by the growth of another component on the surface of seed nanoparticles. The direct electrical and magnetic interactions between the solid-state interfaces would endow the heterostructures with properties beyond the individual components. We have devoted the past few years to magnetic-optical, magnetic-catalytic, and exchange-coupled heterostructures, where the interface effects regulate and optimize the optical, catalytic, and magnetic properties, respectively. In this Spotlight on Applications, we describe our recent progress on magnetic heterostructures. Upon the understanding on the interface control, we then discuss our recent efforts to synthesize core-shell, dimer, and nanocomposite structures, while the regulation of their magnetic, optical, and catalytic properties is addressed in turn. Finally, we give the perspectives of magnetic heterostructures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have