Abstract

It is shown that in an incompressible fluid in which the magnetic diffusivity λ is much less than the kinematic viscosity ν, certain magnetic field distributions of limited spatial extent (conveniently described as magnetic eddies) can exist on a length scale such that the associated Reynolds number and magnetic Reynolds number are respectively small and large compared with unity. The Lorentz forces are in equilibrium with the dynamic forces associated with the fluid motion. The boundary condition imposed on this motion is that at a large distance from a magnetic eddy the velocity field should be a uniform axisymmetric irrotational straining motion. The eddies are steady in the limit λ → 0, but decay slowly in a fluid of finite conductivity. Two particular eddies are considered in detail: a disk-shaped eddy in a compressive straining motion, and a spherical eddy in an extensive straining motion. Possible applications to turbulence in interstellar gas clouds are qualitatively considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.