Abstract

Magnetic structure of functional magnetic dielectrics is traditionally of high interest. Here, we use the magnetic force microscopy (MFM) and nonlinear-optical probe of second harmonic generation for studies of surface domain structure of monocrystalline Lu2.1Bi0.9Fe5O12 garnet films. The transformation of the magnetic domains under the application of the dc magnetic field is revealed by the MFM for both the top-view and the cleavage of the iron-garnet layer. Complementary magnetic force and second harmonic generation microscopy show that the considered film reveals the magnetization inclined with respect to the film’s normal, with its orientation being inhomogeneous within the film’s thickness. The second harmonic generation (SHG) microscopy confirms the zigzag structure of the surface-closing domain with the magnetization containing in-plane and out-of-plane magnetization components. We believe that these features of magnetic behavior of garnet films are important for the design of garnet-based magnetic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call