Abstract

The mechanical and structural properties of passive skeletal muscle are important for musculoskeletal models in impact biomechanics, rehabilitation engineering and surgical simulation. Passive properties of skeletal muscle depend strongly on the architecture of the extracellular matrix (ECM), but the structure of ECM and its realignment under applied deformation remain poorly understood. We apply second harmonic generation (SHG) microscopy to study muscle ECM in intact muscle samples both under deformation and in the undeformed state. A method for regional relocation was developed, so that the same ECM segment could be viewed before and after applying deformations. Skeletal muscle ECM was viewed at multiple scales and in three states: undeformed, under compression and under tension. Results show that second harmonic generation microscopy provides substantial detail of skeletal muscle ECM over a wide range of length scales, especially the perimysium structure. We present images of individual portions of skeletal muscle ECM both undeformed and subjected to tensile/compressive deformation. We also present data showing the response of the perimysium to a partial thickness cut applied to a section under tensile deformation. Statement of significanceSecond Harmonic Generation (SHG) microscopy is an imaging technique which takes advantage of a non-linear and coherent frequency doubling optical effect that is present in a small number of biological molecules, primarily collagen Type I, II and myosin. Collagen I is the most abundant collagen type in skeletal muscle, making SHG a promising option for visualisation of the skeletal muscle extracellular matrix (ECM). SHG microscopy does not require fixing or staining. This short communication presents the application of SHG microscopy to skeletal muscle ECM to improve our understanding of how collagen fibres reorganise under applied tensile and compression, including microscopic observations of collagen fibre reorganisation for intact samples by using a method to re-identify specific regions in repeated deformation tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call