Abstract

For some 3d transition-metal monopnictides, their physical properties are strongly affected by interstitial 3d transition-metal atoms, such as Fe1+δSb, in which the electrical transport, magnetic properties and carrier concentrations have strong dependence on the composition of interstitial Fe (Shiomi et al. Phys. Rev. Lett. 108(5), 056601 2012), Therefore, it is important to study the influence of interstitial Co on the physical properties of Co1+δSb. Here, the magnetic and transport properties have been studied on Co1.05Sb single crystals. The magnetic and electrical transport measurements reveal that stoichiometric CoSb is a nonmagnetic metal. The interstitial Co in this compound exhibits a paramagnetic behaviour and weak antiferromagetic correlations. However, it has no effect on transport properties. A very low magnetoresistance (≤ 0.2%) was observed under the magnetic field up to 14 T, which suggests that Co1+δSb could be a potential material of electronic devices for the application at a high magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.