Abstract

A method is proposed to estimate the lattice and magnetic contributions to the total magnetocaloric effect (MCE) in materials with magnetostructural phase transitions. The method is based on two assumptions: (a) the lattice contribution is proportional to magnetostriction and (b) the magnetic contribution obeys a field dependence ΔTm ∼ Hn. Temperature and magnetic field dependences of the MCE and magnetostriction are used to estimate the contributions. Estimations of the contributions in Sm0.6Sr0.4MnO3 manganite are made for cases when n = 0.66 and n = 0.75. Analysis shows that in the area of the maximum of the effect for n = 0.66, the magnetic subsystem contributes about 58% of the total MCE, and the remaining 42% are due to a change in the entropy of the lattice. In the case of n = 0.75, the magnetic contribution remains predominant, but the ratio of the contributions changes: the magnetic contribution counts for 53% and the lattice contribution equals to 47%. The ratio of contributions varies with the temperature and magnetic field. The results of estimation agree with direct measurements of the MCE in Sm0.5Sr0.5MnO3 manganite, where almost the total effect is due to a change in the magnetic entropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call