Abstract
The effect of periodic changes in particle velocity on mass transfer to the reacting surface of a magnetic particle with a diameter 225μm in laminar flow has been investigated in a microfluidic reactor. The periodic particle motion in a fluid was investigated under a sinusoidal magnetic field generated by a quadrupole arrangement of electromagnets around the reactor. The effect of operating frequency of the rotating magnetic field, intensity of the magnetic field, and phase shift between the two sets of magnets on particle dynamics has been studied. Three particle motion modes have been observed depending on the frequency of the applied field. The mass transfer rate was estimated under steady velocity and variable velocity of the particle using a mass transfer correlation by Feng and Michaelides (2001). The validity of this correlation for the case of variable particle velocity has been confirmed with a 2D numerical model, describing actual hydrodynamics and mass transfer towards the particle surface. The mass transfer coefficient depends both on the mean particle velocity and the deviation of velocity from the mean value. The periodic movement with variable particle velocity reduces the mass transfer coefficient by 7.6% as compared to steady state motion with the same mean velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.