Abstract

Dispersed water-immiscible solvents are known to enhance oxygen transfer rates in oxygen-limited aerobic fermentations. Here, this technique is applied to improve the mass transfer rate of poorly water-soluble gaseous pollutants during the biological treatment of waste gases. In a stirred-tank reactor, the enhancement of mass transfer rates was studied as a function of the pollutant solubility in water. The solvent used was FC40 (up to 10% v/v) and the model gaseous pollutants were toluene and oxygen (moderately and poorly water-soluble, respectively).The overall volumetric mass transfer coefficient from the gas to the bulk liquid (klagl) was measured under nonsteady-state conditions in the absence of micro-organisms. It was found to be essentially constant for the solvent volume fractions tested and for both toluene and oxygen. Using the values of klagl and the partition coefficient gas/liquid (mgl), the enhancement of the mass transfer rate by solvent addition could be predicted theoretically. A good agreement between the theoretical evaluation and the experimental results from experiments in the presence of biological consumption was observed. An enhancement of the mass transfer rate by a factor of 1.1 was found for toluene using a dispersion containing 10% (v/v) FC40 while the oxygen transfer rate increased by a factor of two at the same solvent volume fraction. It was further demonstrated theoretically for other gaseous compounds that the addition of solvent has a more pronounced effect on the enhancement of the transfer rate in the case of poorly water-soluble compounds compared to moderately water-soluble ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.