Abstract

We present a scheme to entangle two magnon modes in two macroscopic yttrium-iron-garnet spheres. The two spheres are placed inside two microwave cavities, which are driven by a two-mode squeezed microwave field. By using the linear state-swap interaction between the cavity and the magnon mode in each cavity, the quantum correlation of the two driving fields is with high efficiency transferred to the two magnon modes. Considerable entanglement could be achieved under experimentally achievable conditions , where g is the cavity-magnon coupling rate and κa, κm are the decay rates of the cavity and magnon modes, respectively. The entanglement is in the steady state and robust against temperature, surviving up to hundreds of milliKelvin with experimentally accessible two-mode squeezed source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.