Abstract
Abstract The three-body dissociation dynamics of the dicationic camphor molecule (C10H16O2+) resulting from Auger decay are investigated using soft x-ray synchrotron radiation. A photoelectron-photoion-photoion coincidence method, a combination of a velocity map imaging spectrometer and a time-of-flight spectrometer is employed to measure the 3D momenta of ions detected in coincidence. The ion mass spectra and the ion–ion coincidence map at photon energies of 287.9 eV (below the C 1s ionization potential) and 292.4 eV (above the C 1s ionization potential for skeletal carbon) reveal that fragmentation depends on the final dicationic state rather than the initial excitation. Using the native frame method, three new fragmentation channels are discussed; (1) CH2CO+ + C7H 11 + + CH3, (2) CH 3 + + C7H 11 + + CH2CO, and (3) C2H 5 + + C6H 9 + + CH2CO. The dominating nature of sequential decay with deferred charge separation is clearly evidenced in all three channels. The results are discussed based on the experimental angular distributions and momenta distributions, corroborated by geometry optimization of the ground, monocationic, and dicationic camphor molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.