Abstract

Early identification of hematoma enlargement and persistent hematoma expansion (HE) in patients with cerebral hemorrhage is increasingly crucial for determining clinical treatments. However, due to the lack of clinically effective tools, radiomics has been gradually introduced into the early identification of hematoma enlargement. Though, radiomics has limited predictive accuracy due to variations in procedures. Therefore, we conducted a systematic review and meta-analysis to explore the value of radiomics in the early detection of HE in patients with cerebral hemorrhage. Eligible studies were systematically searched in PubMed, Embase, Cochrane and Web of Science from inception to April 8, 2024. English articles are considered eligible. The radiomics quality scoring (RQS) tool was used to evaluate included studies. A total of 34 studies were identified with sample sizes ranging from 108 to 3016. Eleven types of models were involved, and the types of modeling contained mainly clinical, radiomic, and radiomic plus clinical features. The radiomics models seem to have better performance (0.77 and 0.73C-index in the training cohort and validation cohort, respectively) than the clinical models (0.69C-index in the training cohort and 0.70C-index in the validation cohort) in discriminating HE. However, the C-index was the highest for the combined model in both the training (0.82) and validation (0.79) cohorts. Machine learning based on radiomic plus clinical features has the best predictive performance for HE, followed by machine learning based on radiomic features, and can be used as a potential tool to assist clinicians in early judgment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.