Abstract

Background: The development of automated seizure detection methods using EEG signals could be of great importance for the diagnosis and the monitoring of patients with epilepsy. These methods are often patient-specific and require high accuracy in detecting seizures but also very low false-positive rates. The aim of this study is to evaluate the performance of a seizure detection method using EEG signals by investigating its performance in correctly identifying seizures and in minimizing false alarms and to determine if it is generalizable to different patients. Methods: We tested the method on about two hours of preictal/ictal and about ten hours of interictal EEG recordings of one patient from the Freiburg Seizure Prediction EEG database using machine learning techniques for data mining. Then, we tested the obtained model on six other patients of the same database. Results: The method achieved very high performance in detecting seizures (close to 100% of correctly classified positive elements) with a very low false-positive rate when tested on one patient. Furthermore, the model portability or transfer analysis revealed that the method achieved good performance in one out of six patients from the same dataset. Conclusions: This result suggests a strategy to discover clusters of similar patients, for which it would be possible to train a general-purpose model for seizure detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.