Abstract
Diagnostic performance of prostate MRI depends on high-quality imaging. Prostate MRI quality is inversely proportional to the amount of rectal gas and distention. Early detection of poor-quality MRI may enable intervention to remove gas or exam rescheduling, saving time. We developed a machine learning based quality prediction of yet-to-be acquired MRI images solely based on MRI rapid localizer sequence, which can be acquired in a few seconds. The dataset consists of 213 (147 for training and 64 for testing) prostate sagittal T2-weighted (T2W) MRI localizer images and rectal content, manually labeled by an expert radiologist. Each MRI localizer contains seven two-dimensional (2D) slices of the patient, accompanied by manual segmentations of rectum for each slice. Cascaded and end-to-end deep learning models were used to predict the quality of yet-to-be T2W, DWI, and apparent diffusion coefficient (ADC) MRI images. Predictions were compared to quality scores determined by the experts using area under the receiver operator characteristic curve and intra-class correlation coefficient. In the test set of 64 patients, optimal versus suboptimal exams occurred in 95.3% (61/64) versus 4.7% (3/64) for T2W, 90.6% (58/64) versus 9.4% (6/64) for DWI, and 89.1% (57/64) versus 10.9% (7/64) for ADC. The best performing segmentation model was 2D U-Net with ResNet-34 encoder and ImageNet weights. The best performing classifier was the radiomics based classifier. A radiomics based classifier applied to localizer images achieves accurate diagnosis of subsequent image quality for T2W, DWI, and ADC prostate MRI sequences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have