Abstract
Abstract Flutter-induced fatigue failure investigation of the fan blades of aero-engines necessitates extensive testing. During engine ground testing, strain gauges on rotor fan blades and casing vibration sensors were employed to investigate structural dynamic aspects. The correlation between strain sensor signals and fan casing vibration signals allowed the diagnosis of fluttering fan blades. For automated flutter detection during engine development testing, a machine learning-augmented information fusion methodology was developed. The method analyses casing vibration signals by extracting time-domain statistical features, intrinsic mode function characteristics through empirical mode decomposition, and recurrence quantification features. Feature vectors obtained from a relatively large set of engine tests were subjected to dimension reduction by applying machine learning techniques to rank them. Reduced feature vector space was labelled as “flutter” or “normal” based on the correlation of rotor strain gauge signals. In addition, the labelled feature vectors were employed to train classifier models using supervised learning-based algorithms such as Support Vector Machines, Linear Discriminant Analysis, K-means Clustering, and Artificial Neural Networks. Using only vibration signals from the casing, the trained and validated classifiers were able to detect flutter in fan baldes with a 99% probability during subsequent testing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have