Abstract
The harsh and hostile internal environment of semi-autogenous (SAG) mills renders real-time monitoring of some critical variables practically unmeasured. Typically, feed size fractions are known to cause mill fluctuations and impede the consistent processing behaviour of ores. There is, therefore, the need for continuous monitoring of mill parameters for optimal operation. In this paper, an acoustic-based sensing method is employed to estimate, in real time, a snapshot of the different feed size fractions presented to a laboratory-scale SAG mill. Employing the MATLAB 2020b programme, the mill acoustic signal is processed using various transform techniques such as power spectral density estimate (PSDE) by Welch’s method, discrete wavelet transform (DWT), wavelet packet transform (WPT), empirical mode decomposition (EMD), and variational mode decomposition (VMD). Different fractional bandpowers are obtained from the PSDE spectrum, while the statistical root mean square values are further extracted from DWT, WPT, EMD, and VMD as feature vectors. The features are used as input features in different machine-learning classification algorithms for different mill feed size fractions predictions. The various transform techniques and feed size fraction predictions are evaluated using the various performance indicators obtained from the confusion matrix such as accuracy, precision, sensitivity and F1 score. The study showed that the acoustic signal feature extraction techniques used in conjunction with the Support Vector Machine (SVM), linear discriminant analysis (LDA), and ensemble with subclass discriminant machine learning algorithms demonstrated improved performance for predicting feed size variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.