Abstract

BackgroundArtifact contamination reduces the accuracy of various EEG based neuroengineering applications. With time, biomedical signal denoising has been the utmost protuberant research area. So, the noise-reducing algorithm should be carefully deployed since artifacts result in degraded performance. MotivationArtifact reduction or denoising in degraded EEG signals requires a lot of improvement. The main aim of this paper is to present the investigation carried out to suppress the noise found in EEG signals of depression. MethodThe focus is to compare the effectiveness of the physiological signal denoising approaches based on discrete wavelet transform (DWT) and wavelet packet transform (WPT) combined with VMD (variational mode decomposition), namely VMD-DWT and VMD-WPT, with other approaches. In these approaches, the detrended fluctuation analysis (DFA) will be used to define the mode selection criteria. First of all, VMD will decompose the signal into various components, then DWT and WPT will be used to denoise the artifactual components rather than completely rejecting these with DFA as the mode selection basis. Simulations have been carried out on artificially contaminated and real databases of depression to demonstrate the effectiveness of the proposed technique using the performance parameters such as SNR, PSNR, and MSE. ContributionIt can be said that sufficient removal of artifacts is gained by VMD- DFA-WPT and VMD-DFA-DWT though VMD-DFA-WPT outperforms VMD- DFA-DWT and others. Such an artifact removal system may offer an effective solution for clinicians as a crucial stage of pre-processing and may prevent delay in diagnosis for depression signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.