Abstract

AbstractThis paper presents a novel, interdisciplinary study that leverages a Machine Learning (ML) assisted framework to explore the geometry of affine Deligne–Lusztig varieties (ADLV). The primary objective is to investigate the non-emptiness pattern, dimension, and enumeration of irreducible components of ADLV. Our proposed framework demonstrates a recursive pipeline of data generation, model training, pattern analysis, and human examination, presenting an intricate interplay between ML and pure mathematical research. Notably, our data-generation process is nuanced, emphasizing the selection of meaningful subsets and appropriate feature sets. We demonstrate that this framework has a potential to accelerate pure mathematical research, leading to the discovery of new conjectures and promising research directions that could otherwise take significant time to uncover. We rediscover the virtual dimension formula and provide a full mathematical proof of a newly identified problem concerning a certain lower bound of dimension. Furthermore, we extend an open invitation to the readers by providing the source code for computing ADLV and the ML models, promoting further explorations. This paper concludes by sharing valuable experiences and highlighting lessons learned from this collaboration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.