Abstract

Gossypol (Gsp), a natural toxin concentrated in cottonseeds, poses great risks to the safe consumption of cottonseed products, which are used extensively throughout the food industry. In this work, we report the first luminescence "turn-on" sensors for Gsp using near-infrared emitting lanthanide (Ln3+) materials, including Ln3+ MOFs and Ln3+ salts. We first demonstrate that the Yb3+ photoluminescence of a Yb3+ MOF, Yb-NH2-TPDC, can be employed to selectively detect Gsp with a limit of detection of 25 μg/mL via a "turn-on" response from a completely nonemissive state in the absence of Gsp. The recyclability and stability of Yb-NH2-TPDC in the presence of Gsp was demonstrated by fluorescence spectroscopy and PXRD analysis, respectively. A variety of background substances present in practical samples that would require Gsp sensing, such as refined cottonseed oil, palmitic acid, linoleic acid, and α-tocopherol, did not interfere with the Yb3+ photoluminescence signal. We further identified that the "turn-on" of Yb-NH2-TPDC photoluminescence was due to the "antenna effect" of Gsp, as evidenced by spectroscopic studies and supported by computational analysis. This is the first report that Gsp can effectively sensitize Yb3+ photoluminescence. Leveraging this sensing mechanism, we demonstrate facile, highly sensitive, fast-response detection of Gsp using YbCl3·6H2O and NdCl3·6H2O solutions. Overall, we show for the first time that Ln3+-based materials are promising luminescent sensors for Gsp detection. We envision that the reported sensing approach will be applicable to the detection of a wide variety of aromatic molecules using Ln3+ compounds including MOFs, complexes, and salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.