Abstract
The objective of this study was to assess the relative long-term effects of linoleic (cis, cis 18:2), linolelaidic (trans, trans 18:2), and palmitic (16:0) acids on hepatic lipoprotein production in HepG2 cells. All fatty acids increased the mass of triglycerides (TG) in the medium and the incorporation of [(3)H]-glycerol into secreted TG; the increase was more pronounced with linoleic acid than with linolelaidic and palmitic acids. The net accumulation in the medium of apolipoprotein (apo) A-I was not affected by the fatty acids tested and moderate changes in that of apoB resulted in apoB/apoA-I mass ratios of 1.05, 1.27 and 0.86 with linoleic, linolelaidic and palmitic acids, respectively. The incorporation of [(14)C]-acetate into cellular plus secreted total sterols was 9.1%, 33.6% and 17.4% of total [(14)C]-labeled lipids with linoleic, linolelaidic and palmitic acids, respectively. Relative to linoleic acid, palmitic acid, and to a greater extent (P < 0.05) linolelaidic acid, increased the secretion and cellular accumulation of [(14)C]-labeled free cholesterol (FC) and cholesteryl esters and decreased those of TG and phospholipids (PL). Compared with linoleic acid, linolelaidic acid increased LDL-cholesterol (C) and HDL-C by 154% (P < 0.001) and 50% (P = 0.016), respectively, whereas palmitic acid increased LDL-C by 17% (P > 0.1) and did not affect HDL-C. The LDL-C to HDL-C ratios were 0.70, 1.18 and 0.96 with linoleic, linolelaidic and palmitic acids, respectively. These differences were not due to altered LDL receptor activity. The PL to C ratios of HDL particles were 1.61, 0.40 and 0.77 with linoleic acid, linolelaidic acid and palmitic acid, respectively. These results suggest that relative to cis polyunsaturated and saturated fatty acids, trans PUFA more adversely affect the concentration and composition of apoA-I- and apoB-containing lipoproteins secreted by HepG2 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.