Abstract

Synchronous functional languages such as Lustre or Lucid define a restricted class of Kahn Process Networks which can be executed with no buffer. Every expression is associated to a clock indicating the instants when a value is present. A dedicated type system, the clock calculus, checks that the actual clock of a stream equals its expected clock and thus does not need to be buffered. The n-synchrony relaxes synchrony by allowing the communication through bounded buffers whose size is computed at compile-time. It is obtained by extending the clock calculus with a subtyping rule which defines buffering points.This paper presents the first implementation of the n-synchronous model inside a Lustre-like language called Lucy-n. The language extends Lustre with an explicit buffer construct whose size is automatically computed during the clock calculus. This clock calculus is defined as an inference type system and is parametrized by the clock language and the algorithm used to solve subtyping constraints. We detail here one algorithm based on the abstraction of clocks, an idea originally introduced in [5]. The paper presents a simpler, yet more precise, clock abstraction for which the main algebraic properties have been proved in Coq. Finally, we illustrate the language on various examples including a video application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.