Abstract

We propose a programming model dedicated to real-time video-streaming applications for embedded media devices, including high-definition TVs. This model is built on the synchronous programming model extended with domain-specific knowledge --- periodic evolution of streams --- to allow correct-by-construction properties of the application to be proven by the compiler. These properties include buffer requirements and delays between input and output streams.Such properties are tedious to analyze by hand, due to the combinatorics of video filters, multiple data rates and formats. We show how to extend a core synchronous data-flow language with a notion of periodic clocks, and to design a relaxed clock calculus (a type system for clocks) to allow non strictly synchronous processes to be composed. This relaxation is associated with a subtyping rule in the clock calculus. Delay, buffer insertion and control code for these buffers are automatically inferred from the clock types through a systematic program transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.