Abstract
AbstractLucy-n is a language for programming networks of processes communicating through bounded buffers. A dedicated type system, termed a clock calculus, automatically computes static schedules of the processes and the sizes of the buffers between them.In this article, we present a new algorithm which solves the subtyping constraints generated by the clock calculus. The advantage of this algorithm is that it finds schedules for tightly coupled systems. Moreover, it does not overestimate the buffer sizes needed and it provides a way to favor either system throughput or buffer size minimization.KeywordsPrecedence ConstraintSystem ThroughputConstraint SystemPeriodic PatternUnknown WordThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.