Abstract

Recent progress on the use of liquid organometallic sources for replacing the group V compressed gases looks particularly encouraging. We have grown both strained and unstrained InxGa1-xAsyP1-y/InP and In0.53Ga0.47As/InP quantum well materials and devices in a non-hydride metalorganic chemical vapor deposition (MOCVD) system using liquid group V sources, tertiarybutylarsine (TBA) and tertiarybutylphosphine (TBP). Very low threshold current strained InGaAsP/InP quantum well laser diodes have been grown using TBA and TBP for the first time. Single 90 angstrom InGaAsP quantum well lasers emitting at 1.55 micrometers displayed threshold current densities of 121 A/cm2 for a 1.6% compressively strained SQW, and 249 A/cm2 for an unstrained SQW at a cavity length of 3500 micrometers . Unstrained ternary (In0.53Ga0.47As) single quantum well laser diodes exhibited extremely low threshold current densities (Jth equals 220 A/cm2 for broad area devices 3.5 mm in cavity length). These values indicate that TBA and TBP are viable replacements for the more hazardous compressed gases, arsine and phosphine.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call