Abstract
Material opacities are of interest in many fields. We have developed a Bragg reflection spectrometer that is gated for imaging samples in a laser heated environment for opacity measurement. A micro-channel plate is coated with a photocathode material and a fast pulse is launched across it. Electrons are converted to photons in a phosphor and recorded on film. Optical gate pulse widths of 100 ps are achieved. Some optical pulse width and sensitivity enhancements are noted at launch and termination. Events of interest are 200 ps long. The framing window is approximately 250 ps in length. Timing jitter is a problem. The instrument timing networks have been examined, and the source of jitter is still unknown. Timing to 50 ps resolution is desired. Close in proximity to the laser-driven event leads to complications in shielding from hard x-rays, hot electrons and shock-driven damage. High Z materials provide shielding from hard x-rays. Magnets screen out hot electrons produced by laser-matter interactions Filters provide energy fiducials. PCD`s provide high resolution timing measurements. Data is recorded on film in a specially designed film pack. The instrument is designed to be used in the NOVA Laser Facility at Lawrence Livermore National Laboratory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have