Abstract
We present a frequency domain model of shot noise in the photodetection of ultrashort optical pulse trains using a time-varying analysis. Shot noise-limited photocurrent power spectral densities, signal-to-noise expressions, and shot noise spectral correlations are derived that explicitly include the finite response of the photodetector. It is shown that the strength of the spectral correlations in the shot noise depends on the optical pulse width, and that these correlations can create orders-of-magnitude imbalance between the shot noise-limited amplitude and phase noise of photonically generated microwave carriers. It is also shown that only by accounting for spectral correlations can shot noise be equated with the fundamental quantum limit in the detection of optical pulse-to-pulse timing jitter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.