Abstract

The basic aim in this work is to present a new technique to analyze the contact surfaces developed by the contact between the tires and the structural pavements by numerical simulations, using 3D finite element formulations with contact mechanics. For this purpose, the Augmented Lagrangian method is used. This study is performed just putting the tires on the structural pavement. These tires and the structural pavement are discretized by finite elements under large 3D elastoplastic deformation. The real loads (of aircrafts, trucks or cars) are applied directly on each tire and by contact mechanics procedures, the real contact area between the tires and the pavement surface is computed. The penetration conditions and the contact interfaces are investigated in details. Furthermore, the pressure developed at the contact surfaces is automatically calculated and transferred to the structural pavement by contact mechanics techniques. The purpose of this work research is to show that the contact area is not circular and the finite element techniques can calculate automatically the real contact area, the real geometry and its stresses and strains. In the end of this work, numerical results in terms of geometry, stress and strain are presented and compared to show the ability of the algorithm. These numerical results are also compared with the numerical results obtained by the commercial program ANSYS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call