Abstract

TiC-TiB2 composite ceramics were successfully fabricated via planetary ball milling of 72 mass% Ti and 28 mass % B4C powders, followed by low temperature sintering process at 1200°C. The microstructure of the ball-milled powder mixtures and composite ceramics were characterized by Differential thermal analysis equipment (DTA), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results showed that the ball-milled powder mixtures (Ti and B4C powders) were completely transformed to TiC-TiB2 composite ceramics as the powders were milled for 60 h and sintered at 1200°C for 1 h. The formation mechanism of the TiC-TiB2 composite was discussed. The high energy ball milling and necessary sintering for the powder mixtures plays an important role in the formation of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.