Abstract

Abstract This paper presents an associative neural network based on Long Short-Term Memory (LSTM) networks to predict the opening, minimum, maximum and closing prices ​​of the Shanghai composite index, PetroChina Company Limited (PetroChina), and Zhongxing Telecommunications Equipment Corporation (ZTE). The data is transformed with time series techniques to render them stationary. Once good results are obtained in terms of the mean absolute percentage error (MAPE), the model is tested with the American Nasdaq Composite Index (IXIC). Similar works have been carried out, such as that of Ding & Qin (2020) where they predict the opening, minimum and maximum prices ​​of an asset. This study goes a step further to predict the closing value following the proposed associative network methodology. Having the opening price and the closing price, it is possible to make investments to generate profitability based on the daily net change in value of the asset. Resumen Este trabajo presenta una red neuronal asociativa basada en redes LSTM (Long Short-Term Memory) para predecir los precios de apertura, mínimo, máximo y cierre del índice compuesto de Shanghai, PetroChina y Zhongxing Telecommunications Equipment Corporation (ZTE). Los datos son transformados con técnicas de series temporales para hacerlos estacionarios. Una vez obtenidos buenos resultados en términos del error porcentual absoluto medio (MAPE), el modelo es probado con el American Nasdaq Composite Index (IXIC). Trabajos similares han sido realizados, como el de Ding & Qin (2020), donde predicen los precios de apertura, mínimos y máximos de un activo. Este studio va un paso más adelante en la predicción del valor de cierre siguiendo la metodología de redes asociativas propuesta. Teniendo el precio de apertura y el precio de cierre, es posible realizar inversiones para generar rentabilidad en base al cambio neto diario en valor del activo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.