Abstract
Common genetic variations in Wnt signaling genes have been associated with metabolic syndrome and diabetes by mechanisms that are poorly understood. A rare nonconservative mutation in Wnt coreceptor LRP6 (LRP6(R611C)) has been shown to underlie autosomal dominant early onset coronary artery disease, type 2 diabetes, and metabolic syndrome. We examined the interplay between Wnt and insulin signaling pathways in skeletal muscle and skin fibroblasts of healthy nondiabetic LRP6(R611C) mutation carriers. LRP6 mutation carriers exhibited hyperinsulinemia and reduced insulin sensitivity compared to noncarrier relatives in response to oral glucose ingestion, which correlated with a significant decline in tissue expression of the insulin receptor and insulin signaling activity. Further investigations showed that the LRP6(R611C) mutation diminishes TCF7L2-dependent transcription of the IR while it increases the stability of IGFR and enhances mTORC1 activity. These findings identify the Wnt/LRP6/TCF7L2 axis as a regulator of glucose metabolism and a potential therapeutic target for insulin resistance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have