Abstract

Oxidized low-density lipoprotein (OxLDL) has been implicated as a proatherogenic factor with a pathological role in the induction of endothelial dysfunction. Endothelial cells bind and uptake OxLDL primarily through the scavenger receptor lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1), which is believed to mediate critical effects of OxLDL in endothelial cells. To examine the biological events following LOX-1 activation by OxLDL, we used cDNA microarray analysis to globally analyze gene expression changes induced by OxLDL treatment of human aortic endothelial cell line (HAECT) cells overexpressing LOX-1. Consistent with reported functions of OxLDL, in control HAECT cells, OxLDL elicited gene changes in the oxidative stress pathway and other signaling pathways related to OxLDL. With OxLDL treatment, LOX-1-dependent gene expression changes associated with inflammation, cell adhesion, and signal transduction were observed. The transcripts of a number of cytokines and chemokines were induced, which included interleukin-8, CXCL2, CXCL3, and colony-stimulating factor-3. The secretion of these cytokines was confirmed by enzyme-linked immunosorbent assay analysis. In addition, our data revealed a novel link between LOX-1 and a number of genes, including Delta/notch-like epidermal growth factor repeat containing, stanniocalcin-1, cAMP response element modulator, and dual specificity phosphatase 1. Promoter analysis on the genes that changed as a result of LOX-1 activation by OxLDL allowed us to identify early growth response 1 and cAMP response element-binding protein as potential novel transcription factors that function downstream of LOX-1. Our study has enabled us to elucidate the gene expression changes following OxLDL activation of LOX-1 in endothelial cells and discover novel downstream targets for LOX-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.