Abstract

Agglomeration is a critical issue for depositing copper (Cu) thin films, and therefore, the deposition should be preferably performed below 100 °C. This work explores an atomic layer deposition (ALD) process for copper thin films deposited at temperature as low as 50 °C. The process employs copper(I)-N,N′-diisopropylacetamidinate precursor and H2 plasma, which are both highly reactive at low temperature. The deposition process below 100 °C follows an ideal self-limiting ALD fashion with a saturated growth rate of 0.071 nm/cycle. Benefitting from the low process temperature, the agglomeration of Cu thin films is largely suppressed, and the Cu films deposited at 50 °C are pure, continuous, smooth, and highly conformal, with the resistivity comparable to PVD Cu films. In-situ reaction mechanism studies by using quartz crystal microbalance and optical emission spectroscopy are followed, and the results confirm the high reactivity of the Cu amidinate precursor at low temperature. To the best of our knowledge, ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call