Abstract

A new atomic layer deposition (ALD) process for depositing nickel carbide (Ni3C x) thin films is reported, using bis( N, N'-di- tert-butylacetamidinato)nickel(II) and H2 plasma. The process shows a good layer-by-layer film growth behavior with a saturated film growth rate of 0.039 nm/cycle for a fairly wide process temperature window from 75 to 250 °C. Comprehensive material characterizations are performed on the Ni3C x films deposited at 95 °C with various H2 plasma pulse lengths from 5 to 12 s, and no appreciable difference is found with the change of the plasma pulse length. The deposited Ni3C x films are fairly pure, smooth, and conductive, and the x in the nominal formula of Ni3C x is approximately 0.7. The ALD Ni3C x films are polycrystalline with a rhombohedral Ni3C crystal structure, and the films are free of nanocrystalline graphite or amorphous carbon. Last, we demonstrate that, by using this ALD process, highly uniform Ni3C x films can be conformally deposited into deep narrow trenches with an aspect ratio as high as 20:1, which thereby highlights the broad and promising applicability of this process for conformal Ni3C x film coatings on complex high-aspect-ratio 3D architectures in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call