Abstract

Two-dimensional MoS2 is a promising material for applications, including electronics and electrocatalysis. However, scalable methods capable of depositing MoS2 at low temperatures are scarce. Herein, we present a toolbox of advanced plasma-enhanced atomic layer deposition (ALD) processes, producing wafer-scale polycrystalline MoS2 films of accurately controlled thickness. Our ALD processes are based on two individually controlled plasma exposures, one optimized for deposition and the other for modification. In this way, film properties can be tailored toward different applications at a very low deposition temperature of 150 °C. For the modification step, either H2 or Ar plasma can be used to combat excess sulfur incorporation and crystallize the films. Using H2 plasma, a higher degree of crystallinity compared with other reported low-temperature processes is achieved. Applying H2 plasma steps periodically instead of every ALD cycle allows for control of the morphology and enables deposition of smooth, polycrystalline MoS2 films. Using an Ar plasma instead, more disordered MoS2 films are deposited, which show promise for the electrochemical hydrogen evolution reaction. For electronics, our processes enable control of the carrier density from 6 × 1016 to 2 × 1021 cm-3 with Hall mobilities up to 0.3 cm2 V-1 s-1. The process toolbox forms a basis for rational design of low-temperature transition metal dichalcogenide deposition processes compatible with a range of substrates and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.